閉環(huán)之困:損耗與機遇并存
ITO靶材在濺射鍍膜過程中利用率通常僅30%左右,大量含銦廢料(廢舊靶材、邊角料、鍍膜腔室廢料)隨之產(chǎn)生。過去,這些價值的廢料往往被簡單處理或堆積。建立從“廢靶材→再生銦→新靶材”的閉環(huán)體系,成為破解資源約束的黃金路徑。
銦在ITO靶材、半導體、合金等領域的應用表明其在電子和光伏產(chǎn)業(yè)中的關鍵作用,推動了銦回收的必要性。銦,這一關鍵元素在ITO廢料回收中扮演著至關重要的角色。通過回收這些廢料,可以顯著減少原礦開采成本,高達50%。同時,隨著半導體和光伏領域的迅猛發(fā)展,對高純銦的需求也呈現(xiàn)出剛性增長,進一步凸顯了銦回收的緊迫性和重要性。
銦靶材回收的主要任務是將銦從靶材中的其他金屬和材料中分離出來,并將其提純至高純度?;厥辗椒òɑ鸱ā穹ê碗娀瘜W法。
火法冶金工藝使用高溫熔煉和精煉來回收銦。這種方法適用于大規(guī)模回收,但存在一些缺點,如產(chǎn)生危險廢物、高能耗,以及可能損失有價值的銦。
濕法冶金工藝利用化學浸出劑將銦從靶材中溶解出來。這種方法比火法更環(huán)保,適用于從成分復雜的靶材中回收銦。然而,這一過程可能較為復雜,需要使用危險化學品。
電化學過程通過電流將銦從靶材中溶解和回收。這種方法也比火法更環(huán)保,可以回收較高純度的銦。但這一過程可能較為復雜,需要專門的設備和專業(yè)知識。
銦靶材回收是利用銦資源的重要步驟。盡管有多種回收方法,但分離和提純銦仍是關鍵挑戰(zhàn)。應繼續(xù)努力提高回收效率和可持續(xù)性,以確保銦資源的長期可獲得性。

