為了使離子交換劑回復到初始的的電中性狀態,抵消所得電荷,就得從溶液中吸附當量的此符號電荷的離子,此離子應占據因反離子離開樹脂而游離的活性基團。由于離子交換樹脂從溶液中吸附離子,又變為電中性。
因此,離子交換劑保持電中性的條件又反過來限制反離子從樹脂到溶液的擴散。當離子B從溶液中來代替樹脂上的A,從而就抵消離子A從樹脂轉入溶液時造成的固定離子的電荷。一方面引起擴散的濃度梯度,另一方面反抗離子擴散的靜電力,都對離子交換樹脂一溶液系統中的各離子起作用。
制備方法
不同類型的催化劑有不同的制備方法。均相催化用催化劑的制備主要是用化學法獲得所需化合物及有機絡合物。多相催化用無載體催化劑(如Pt-Rh網)的制備是先用火法熔煉制成合金,然后經拉絲、織網而成。載體催化劑的制備較為復雜,一般是將載體原料經配料、成形、燒成等工藝過程加工成一定形狀(如球狀、柱狀、蜂窩狀),然后用浸漬法加載貴金屬活性組分及助催化劑,后經還原焙燒而成。
中毒引起的失活
(1)暫時中毒(可逆中毒): 毒物在活性中心上吸附或化合時,生成的鍵強度相對較弱可以采取適當的方法除去毒物,使催化劑活性恢復而不會影響催化劑的性質,這種中毒叫做可逆中毒或暫時中毒。
(2)中毒(不可逆中毒): 毒物與催化劑活性組份相互作用,形成很強的的化學鍵,難以用一般的方法將毒物除去以使催化劑活性恢復,這種中毒叫做不可逆中毒或中毒。
(3)選擇性中毒: 催化劑中毒之后可能失去對某一反應的催化能力,但對別的反應仍有催化活性,這種現象稱為選擇中毒。在連串反應中,如果毒物僅使導致后繼反應的活性位中毒,則可使反應停留在中間階段,獲得高產率的中間產物。

